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EFFECT OF TRANSDUCER SIZE ON THE STATISTICAL PROPERTIES OF
A STMULATED TURBULENT WALL PRESSURE FIELD
By
Robert L. Ash! and Mehdi R. Khorrami?
.\ SUMMARY
The root mean square pressure was calculated with synthetically
generated pressure signals for transducers of different size. The

transducer diameters were in the range of 0.02 < d <1.18 at a Reynolds

number,/Rﬁsia/jf 12,250. The lower limit of the diameter simulated here

was much smaller than diameters reported previously by other workers.
Calculated root mean square pressure levels developed in the present
work were in good.agregment with the measured experimental data,

In order to check the simulated pressure signals, the power spec-
trum and two point corre}ation were calculated as well. The power spec-
tra obtained with the smaller transducers were higher in energy level at
high frequencies. The shape of the power spectra were similar and.over-
all agreement with experimental data was reasonable. The two point cor-
relations were obtained for separation distances of g;,;?1.66, and
13.37. The same convection and decay effects as the experimental data

'

were observed with the calculated correlations. Again, overall

agreement with experimental result was quite good.1::;\\

! Eminent Professor, Department of Mechanical Engineering and Mechanics,
0ld Dominion University, Norfolk, Virginia 23508.

2 Graduate Research Assistant, Department of Mechanical Engineering and
Mechanics, Old Dominion University, Norfolk, Virginia 23508.
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I. INTRODUCTION

Turbulent wall pressure data are required for the analysis of engi-
neering problems related to noise production on aerodynamic bodies, as
well as vibration and panel flutter studies (Dowell [1])*. In recent
years, the ideﬁtification of compliant walls which are receptive to
turbulent pressure fluctuations has been of particular interest (Bush-
nell et al. [2] and Buckingham et al. [3]). It has been speculated that
a compliant surface might be capable of interacting with a turbulent
flow to produce a net drag reduction. When local instantaneous pressure
data are required, the resolution capability of even the smallest
pressure transducers becomes a serious limitation because they average
the pressure field spatially (Corcos [4] and Emmerling, Meir and
Dinkelacker [5]). The purpose of this investigation has been to utilize
a synthetic pressure field to study the effect of transducer size.

Instantaneous wall pressure fluctuations can be generated either by
employing large arrays of pressure transducers with prescribed spatial
resolution in an experiment or, by solving the full three-dimensional
Navier-Stokes equations. Although, both methods can be more accurate
than a éhmulation, they represent a formidable task in terms of time and
expense and are restricted to a particular temporal and spatial resolu-
tion. The Monte Carlo technique employed in the present work is capable
of resolving arbitrarily in time and space.

The contributions from small scale motions (with length scales on

* The numbers in brackets indicate references.
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v . :
the order of —— , where Ur is the friction velocity) to the wall pres-

U

E sure cannot be measured currently because no pressure transducers are
sufficiently small. However, during the late sixties and early seven—
ties the importance of high frequency pressure fluctuations on the

measurements of root-mean square pressure (P ) was established by

R.M.S.
Blake [6] and Emmerling, Meir and Dinkelacker [5] and a rough estimate

of their contribution to PR.M.S was given by Emmerling, Meier and
Dinkelacker [5]. The understanding of the above features were made
possible by employing pressure transducers which were miniature when
compared tg earlier experiments. Data generated from these sensors
indicated that the R.M.S pressure increased asymptotically with decreas-
ing transducer size. The present work has attempted to clarify the
above suggestion by using synthetic pressure fluctuations to study the
effect of a controlled, repeatable pressure history on the measure-
ments from differenf sensor sizes. In order to validate the synthetic-
ally generated pressure fluctuations, other important features of a
turbulent boundary layer (such as power-spectrum and two point corre-
lation) have been calculated as well.

In recent years,.a unified view has evolved concerning the exis-
tance of two diéferent scales of disturbances in a turbulent boundary
layer. Some disturbances have scales which are comparable to displace-
ment thickness (6*, which can be related directly to boundary layer

thickness) and other disturbances have much smaller characteristic

lengths which are on the order of = . It is now obvious from the log-

Uy

log plot of power spectrum, that any shift in the high frequency region DN

due to the measurements of small scale eddies, can result in an increase

2 =l

i e
~
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.................

in R.M.S. pressure (Blake [6]), since, P is related to the power-

R.M.S.
spectral density by: N )
2 = 2/ w)du. e
0 :::;:il
Kraichnan (8) first tried to calculate important features of a EF%
v
pressure field by integrating Poisson's equation f%f
9€U.U, s
V2p = - P 5% 1x 5 :“i
¥, -
o

over a finite region. In a subsequent paper, Kraichnan [9] assumed

) ALY
PP LTUB BN

L

local isotropy in planes parallel to the surface and used a crude model
for mean velocity, to estimate the contribution from turbulent mean
shear interactions (which he concluded were the dominant terms). He
also assumed that any column of fluid with a length scale comparable to
the boundary layer thickness was statistically independent of the
adjacent columns. The estimated R.M.S pressure was found to be about
six times the wall shear stress. Recent experiments by Emmerling, Meier
and Dinkelacker [5] and Bull and Thomas [10] have shown that
Kraichnan's P M.S. estimate was in good agreement with their measure-
considering the degree of approgimation he had employed.

Corcos [4] integrated a corrected power-spectrum (his method will

be discussed later) and was able only to give the ratio
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[14]). The integration was up to radian frequencies given by T 14.3,

which was the highest measured frequency By Willmarth and Wooldridge
[14). He indicated that the contribution from higher frequency fluctua-
tions might be significant. Emmerling, Meier and Dinkelacker [5] have
employed an optical method to evaluate the fluctuation field at the
wall. For the sake of comparison, they measured the R.M.S. pressure
with microphones mounted flush with the wall. They plotted the varia-
tion of non-dimensionalized PR.M.S. with non-dimensionalized transducer
diameter and compared them with measurements of several other experi-

ments. Their variables were made dimensionless with respect to free

. 0 . Vv .
stream dynamic pressure, q _, and inner variables T respectively.

T
Their plot showed a dramatic increase im R.M.S. level as the non-d imen-

sionalized diameter was decreased below:ul’c'l = 150. Emmerling, Meier and
v

Dinkelacker [5] have indicated that when the scaling of transducer
diameter was with respect to the displaceﬁent thickness, 6%, the data
did not collapse onto a single curve. This suggested that small scale
eddies were major contributors to the Pe M.s. (or power spectrum) of a
turbulent boundary layer.

In order to understand the results given by Emmerling, Meier and
Dinkelacker [5]), Bull and Thomas [10] conducted an exper iment where
direct power-spectral measurements were made using pinhole microphones
and piezoelectric transducers with the same diameter. With a similar
plot to that of Emmerling, Meir and Dinkelacker [5], they have shown

that although there is an increase in P with decreasing diameter,

R.M.S.
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the increase is not as significant as reported earlier. Bull and Thomas Gt

[10] have attributed the high values of P measured by Blake (6)
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R.M.S.

and Emmerling, Meier and Dinkelacker [5] to the local flow disturbances

O
. .

e
abad.

created by the pinhole-microphones.
Recently, Bull and Langeheineken [11] reproduced the experiment of
Bull and Thomas [10]. They reinterpreted the transducer size parameter

+
d , which was Reynolds number dependent and given by:

(=1

+

. d Re
? L

T
— L
Uao

where L is the characteristic length of the flow field (pipe radius or
boundary layer thickness). Their plots oerI-’z-;:q°° ve d* and ReL show
similar trends for condensor microphones and piezoelectric transducers.
Therefore, they concluded that condenser microphones and piezoelectric
transducers give essentially identical results (which is contrary to the
expl anation of Bull and Thomas [10]). However, the above conclusions
have produced other questions. Firstly, since the transducer diameters
vere not equal, direct comparison with Bull and Thomas' [10] results
were not possible. Secondly, their experiment was conducted in a pipe
flow which raises questions concerning how different flow fields affect

the turbulent wall pressure field. Specifically, the question of whether

the pressure gradient imposed in a pipe flow alters the statistical

properties of the pressure fluctuations must be addressed.
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Most of the semi-empirical work concerned with the correction for

A
& »
_.
5
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transducer size has followed the method first outlined by Uberoi and
Kovasznay [12]. They developed a mapping procedure based on a knowledge
of the instrument response which enabled them to form a response kernel
for the measuring system. The original signal (or the instantaneous )
signal, since they have assumed the instrument response is perfect)
could be retained. But, the limitation of their method was due primari-
ly to the assumption of a total random field which was isotropic and
homogeneous. The established fact that turbulence has a '"fading memory"

implies that it is neither homogeneous nor isotropic. Corcos [4] util-

ized the work of Uberoi and Kovasznay [12] to develop a similarity model

for cross-gpectral density in the form:

-iw&/uc
I‘(w,&,n) -¢(w) a .‘l"]i B %le
c c

where a (wf \and B[ wn ) are similarity functions (based on the ex-
U U

c c
perimental data of Willmarth and Wooldridge [l14]) for the longitudinal
and lateral directions, respectively. He assumed a uniform response
over the transducer surface which had a kernel function equal to the
inverse of its area. That form is consistent with the earlier work of
Uberoi and Kovasznay [l12]. Corcos was then able to show how sensor size
influenced resolution for high frequency fluctuations. However, he was
not able to give a quantitative estimate for the error.

Willmarth and Roos [13] used an identical procedure with Corcos [4]

to show that Corcos's similarity rule was not valid for the high fre-

quency range when the spatial separation between transducers is less
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than 0.78 §*. Willmarth and Wooldridge [14], in their measurements, :j

2 i

: ; : . wd ‘@
discarded fluctuations with frequencies less than .= 0.14, because 80
oo 5

of poor reproducibility of the power spectrum in that range. They have

attributed the problem to wind tunnel noise, and propagation of disturb-

ances upstream. Bull's [15] power spectral density has the same drop

g5 T
THEHES,
(RO B L

K? off and peak frequency as Willmarth and Wooldridge [14] but he was able

-

~A 1 . &

i to make reproducible measurements at frequencies as low as ;‘; = 0.025.
-

Blake [6] used a very small "pinhole" microphone to study the con-

tribution of small scale fluctuations to the power-spectrum. He pointed
out that at high frequencies the scaling on outer variables (6* and Qm)
was poor. As has been discussed earlier, Bull and Thomas [10] made
spectral measurements with two different types of transducers. They
found that the high frequency energy content was four times greater when
measured with pinhole microphones than when measured with piezoelectric
transducers. However, by employing a specially fitted cap, the piezo-
electric transducer was converted into a pinhole microphone and the

measured power-spectrum was then in close agreement with the spectrum

produced by the original pinhole microphone.

Bull and Langeheineken [l1] have pointed out the lack of experi-

5
f.
X
!". <

3
B

mental pressure data in low Reynolds number turbulent flows. Their work

covered for the first time a wide range of Reynolds numbers in a single

%" YEpaah

experiment. They have shown indeed that the power-spectrum=--particul ar- %

Ty ST
U . L
A~
3
l‘l
.

R 3 b il M

¢ 4 o s
5 8 & s
el
—a b a2

ly at high frequencies=--is highly Reynolds number dependent. Also,

their non-dimensionalization of power-spectra (they have used a variety L

of dimensionless correlations) suggest that there is no single similar-
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ity variable which causes the spectral curves to collapse onto a single
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curve.
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Calculation of auto-correlation, Rpp(r), is very useful in deter-

mination of the time scale over which the pressure fluctuations

.
e e e
)

correlate (along with determination of convection speed and decay of the
pressure field). That is, the time scale is indicative of the time
interval over which fluctuations "remember" their past; and the pressure
correlation is approximately the same as the velocity correlations,
because they are determined by the same physical processes.
Theoretically (statistically is a better word) it has been understood

that any peak in the power spectrum (¢(w)) away from the origin would

% )
Lt

result in negative region of Rpp(r). However, the reverse does not hold
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a
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Experimentally (Bull [15] and Blake {6]), it has been proven that
there is a peak away from the origin in the power-spectral density;
therefore, one must expect certain negative regions for the auto-corre-
lation. Based on his integration, Kraichnan [8] was able to predict
that, unlike isotropic turbulence, any turbulent flow with a slight

anisotropy will have negative correlation regions for long separation

distances. The above suggestion was later confirmed by Bull [15] and

‘a

»
.

Blake [6]. =

U e 1)

Monte Carlo methods have been used in this study to construct the

synthetic pressure distributions. This work is an extension of earlier L9,

work by Ash [16] and Ash and Khorrami [17] where detailed accounts of

the construction of the computer programs can be found. Consequently, i
only the major modifications to the previous work have been discussed ;!P
here. i
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The work which follows discusses simulation improvements related to
individual event construction, amplification factors, amplitude decay,
and wavelength decay functions. Subsequently, the statistical measures
of the quality of the simulation are presented and discussed. Finally,
an interpretation of the_tr;nsducer size effect on root-mean-square

pressure calculations is presented and conclusions have been made.
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2. ANALYSIS
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4o

2

2.1 Transducers with Finite Size

e

A

The original computer program (Ash [16]) generated pressure as an

instantaneous point function rather than the average force which is

Te
S

i measured by a transducer of finite area. The distance between adjacent
5 simulation points and the time resolution could be specified by the

user, which enabled arbitrary spatial resolvability. However, in order

g

Q: to check the simulation and produce results which could be compared with
-

& experimental data, it was necessary to introduce features which allowed
%

the influence of surface area to be studied.

Ml b

:',‘:

)

As described in Chap. 1, the finite size and the type of a pres-

0 ’
s 2l

$TiTt
LI

sure transducer can create several size effects (Corcos [4] and Bull and

Thomas {10]). The frequency resolution of any sensor is related direct-

o
;j ly to its characteristic diameter, as well as its construction and its
%
?} sampling time. As the size of a transducer increases, its frequency re-
A |
o2
. L)
sponse decreases. Furthermore, a large sensor cause¢s a severe averaging o
4 A
] effect (see appendix A) which can eliminate some pressure features. The i
‘ ; . , R
‘4 averaging effect results in erroneous measurements, and causes an 1nac- <0
i -
- : , : =0
! curate representation of the high frequency fluctuations. ==
< 0
:g With the previous discussion in mind, an array of storage locations jij:
LS 233
iy ’ 2 £ F . . . 3
o (with arbitrarily prescribed size) were substituted for the point el
3 , . : P - @
’ locations used in previous simulations. The program has been modified e
:
& to permit arbitrary specification of "sensor" locations and sizes. The :
.
.rz . « 1
3 span of the "flat plate" from the front of the first sensor to the back 1
5

]

of the last sensor is called the model length. A schematic diagram of
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the model is shown in Fig. 1. The development length is the segment
ahead of the first sensor location which does not contain a complete
simul ation history.

The width of the transducer is assumed to be equal to its length
(square area). The range of prescribed diameters (here we use the word

"diameter" for convenience) is 0.0196 < g;_<1.176. Figure 2 which
)

represents the spanwise or lateral correlation data measured by
Willmarth and Wooldridge [l4], indicates that the lateral correlation
coefficient remains near unity over that diameter range. It has been
assumed subsequently that the pressure fluctuations at the center of the
sensing element are not affected appreciably by adjacent uncorrelated

spanwise fluctuations.

2.2 Amplification Factor

When a constant convection speed of 0.8 U  was used in the program,
it was found that convection speed calculated from the space-time corre-
lation curves exceeded the free stream velocity; this is obviously in-
consistent with every experimental finding. Several different correc-
tions were tested before it was concluded that the problem was caused by
the instantaneous creation of low frequency (large wavelength) disturb-
ances. Some of those individual disturbance events were created which
spanned more than one simulation location at the instant of creation.
These large eddy events would thus have an infinite convection speed.
Of course, the number of such disturbances is small compared to the
total but, since the low frequency fluctuations decay slowly, the

convection speed effect can be pronounced.
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An amplification time interval has been employed that causes the : ;

T4

-9

disturbance amplitude to grow quickly from a small "zero" value to full =i
@

amplitude, in order to eliminate the infinite convection speed effect. Ok
<o

' An equation of the form .f€
o

- 4.605t2 )

(6/9,) R

P(x,t) = P_(x,t) [1-e e

' i
e el

: . : @)

has been used where Po(x,t) is the randomly generated event amplitude, g
o]

g ' . * . . o

Uc is the disturbance convection speed and & 1is the displacement e
- 3 '4

thickness, while t 1is the relative time (0 at the instant of gener— __;
ation). Since convection speed is frequency dependent the above growth i
time interval becomes a larger fraction of the disturbance lifetime for :;:;
high frequency fluctuations. In fact, at very high frequencies the ;ij
B et i @
amplification time can be larger than the decay time, preventing the [
fluctuation from becoming significant. =
]

Figure 3 shows the plot of the amplification function for a fre- G
. o

. . . S

quency of-ﬁ—— = 0.205 which is near the nominal peak frequency. In ce
() ’ ..';.:‘

earlier simulation programs, the amplification function had been non-di- %ol
-~

mensionalized with respect to boundary layer thickness, §. However,
further testing has shown that 6§ was not a proper choice. Rather, the
displacement thickness, 6*, scales the simulation results adequately to
enable close approximation of a variety of experimental results. Al-
though the amplificction procedure caused the simulated convection ve-
locity to decrease below the free stream velocity, the spgnning effect

due to low frequency disturbances still remained. That is, for short

14
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# separation distances the convection speed is of order 0.9 U, compared to By
o sl
‘i an experimental value which is of order 0.6 U (even though the assumed :;-.!
Ef: event convection speed is on the order of 0.6 U ). zﬂa
=B b
e
2.3 Convection Speed N )
. "o
Although the constant convection speed of 0.8 U, gave reasonable K
results, experiments have shown that wall pressure fluctuations travel 4
il
downstream with frequency dependent convection speed (5, 15). In order 20
N -:
-}: to represent the experimental results more realistically it was el
vty 4
:}2 necessary to introduce a variable convection speed into the simulation. ey
) o
A problem still remained, because virtually every experimenter has found
b4
&= a different range of convection velocities (see Emmerling, Meier and
.~i1 : -
- Dinkelacker [5], Bull [15]). This discrepancy between individual event
<.
convection speed and apparent convection speed was most pronounced for
}% the high frequency fluctuations which are normally attributed to near
-.‘;:
w3 wall effects.
"
Initially the semi-theoretical convection speed model of Corcos [4] :
.. was used to represent the convection velocity. His model assumed an :L.
e exponential variation in convection speed. However, in order to avoid }EJ

computational complexity, a linear variation of comvection speed with

[
Tant b

et pals

frequency was preferred. Since experimental data were so scattered, the Lnd
e
linear assumption was a reasonable compromise between the recent experi- fiq
- ; ; =@
ments and a simple functional form. The linearized convection speed was i
o
o
assumed to decrease linearly from 78 percent of the free stream velocity :
!
at "zero" frequency to a constant 46 percent of the free stream velocity "
El
at frequencies greater than or equal to 34 times peak frequency in the T
i . ‘o
power spectrum. The peak frequency has been taken here as f = (0,33 "= il
P T* :
-
-®
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il Hz from Bull (15]. The assumed variation of convection speed with -
] :

) Po

frequency is shown in Fig. 4 along with the limited experimental data ;lq

S

from Willmarth and Wooldridge [14]. ':?q

e

2.4 Frequency Cutoff Range
The upper limit of the frequency range for individual events is
determined by economics (in terms of computer time, and memory) and the
resolving time step, which in turn is related directly to the peak
frequency. However, the lower limit of the frequency was determined

from totally different considerations. First, in every experiment the

lower frequency fluctuations have been disregarded because of external
uncorrelated noise generation (due to vibration of the wind tunnel or
the fan). Since the computer does not have this problem, the low

frequency limit could be adjusted in agreement with flow physics. The

8,
A

s
O

lower limiting frequencies which can be employed in this study create

ala

disturbances which have wavelengths on the order of 50 §, and imply

«
-

significant correlations over very long distances. This is unrealistic

in a boundary layer flow. For the particular case considered here, the
*

i . . wd
simulation generates frequencies in the Strouhal number (Ir-) range of

o

0.076 to 15.78, where the lowest frequency utilized corresponds to a

wavelength of approximately 8 §,

2.5 Amplitude Decay Function
The earlier experiments concerning the pressure fluctuations have "
revealed that, contrary to the Taylor hypothesis, eddies must decay _—

while they are convected downstream. Experiments by Willmarth and

Wooldridge [14] and later by Bull [15] have shown that each disturbance N
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travels a distance which scales with its wavelength. An amplitude decay

function of the form:

Al iy e-a(x/x)“
? (o}

has been employed where Ab is the original amplitude, A 1is the
disturbance wavelength, x is the distance from the point of generation, By
and a and n are two arbitrary constants, which were determined by
trial and error. The constants were specified ultimately by assuming 3

that each disturbance travelled downstream a distance of five wave-

lengths before it had decayed to one percent of its original amplitude.

Figure 5 shows the variation of the decay function with distance for a

ﬁ*
U

disturbance with a frequency of = 0.205. The functional form used

here is consistent with the experimental findings of Panton et al. [18]
which indicated the initial decay rate is most rapid. Also Fig. 6 shows
"o the combined effect of amplification factor and the decay function on

the amplitude.

2.6 Wavelength Decay Function

The three dimensionality of a turbulent boundary layer suggests
that the waQelength of a disturbance may change along with its ampli- i
E tude. This is a very important concept when it is thought of in terms ;Ef
of the power-spectrum and auto correlation. As each disturbance decays é!i

4 in wavelength, the frequency of the disturbance will increase which in

B A AL s

e
R )

e turn shifts the peak frequency, along with the power spectrum curve,
1

. l..l
_ VPR

toward higher frequencies.
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A vavelength decay function of the form

m
AMx) =2 [R+D Ll ]

has been used where Ao is the original, randomly generated wavelength,
K, D, b and m are arbitrary constants which have been ad justed by

trial and error. The wavelength decay function allowed the wavelength

to be reduced to a specified fraction of its original wavelength at the
time of total decay of the disturbance. The wavelength function has
improved the simulated auto-correlation but it cannot be considered an
optimum function. Figure 7 shows the variation of the wavelength decay
function with distance.

In a few cases a frequency dependent decay function similar to the
one used for amplitude (see Sec. 2.5) was employed. However, that

frequency dependent functional form did not provide any major improve-

ment in simulated statistics but did create some programming difficulty.

Therefore, all the runs presented in this work have used a wavelength

decay of the form given above.

To make sure that a realistic signal was generated by the simul a-
tion, short records of the pressure histories at three different spatial
locations have been produced. Those histories are shown in Figs. 8

through 10, and it is obvious that there are recognizable events which

have been convected over lofig distances. However, there are also sub-~

stantial features which represent "uncorrelated" information. There-
P

fore, it was concluded that the simulated pressure records were similar

to actual experimental records.

The program incorporating the modifications described herein is

listed in Appendix B.
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3. RESULTS AND DISCUSSION

3.1 Two Point Correlation
Two point correlations have been calculated for separation dis-

tances, X , between 1.66 and 13.37 for a wide range of transducer

*
8

diameters. The auto-correlation and bounding cases (1.66 and 13.37) are

shown in Figs. 1l to 13 along with the experimental data of Bull [15].

; . X
Figure 11 shows the auto-correlation at —; = 0.

8

It should be noted that the widths of the positive correlation
curves become narrower as the transducer diameter is decreased. Note
also, that the negative portion of auto-correlation decreases as the

diameter is reduced. At the point where —% = 0.0196, there is an
8

inflection in the auto-correlation (at a dimensionless time delay
1=0.3). The inflection point has been caused by the resolution time

; : d . z c
step. That is, at the point where — is 0.0196, the time required for

many of the simulated pressure events to cross the transducer is smaller

than the user specified time step. Hence, the region of large positive

correlation is diminished due to the absence of those events.
A phenomenon which is similar to the inflection in the auto-corre-
lation curve can be observed in the two-point correlations for the small

separation distance case [5;-= 1.66, Fig. 12] and for the large separa-

tion distance case [Fig. 13]. As the transducer size is reduced, it is
capable of resolving smaller wavelength disturbances, but those

disturbances decay so rapidly that thev decorrelate adjacent

24
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points. Consequently, two-point correlations are reduced as d_ is

*
8

decreased below 0.117.

A more subtle effect can also be observed in the two~point correla-

tion data which is due to improved resolution of the low frequency, long

wavelength events. For large transducer sizes, a filtering effect is
created in the opposite sense to the high frequency case just discussed.
The larger transducers cannot resolve and, therefore, are not influenced
by the high frequency disturbances. Consequently, the low frequency
information is less contaminated and produces a larger correlation coef-
ficient than is actually present. This increased correlation effect is
manifested both in an increase in maximum correlation value and an in~"

crease in correlation width at a given separation distance.

Finally, for sufficiently large transducer sizes, the measured
pressure signal becomes contaminated by the splitting effect discussed

in Appendix A. That is, a continuous pressure event is split into two

events separated by a '"dead band" when the particular pressure event re-~

4

sides entirely upon the transducer. This splitting effect causes a de-

LN

.- l' l’ [

correlation to occur between adjacent points which evidently begins for

> L]
LA )

transducer sizes on the order of-g; = 0,117 in this case.

-
%ﬁ Filtered correlation data have been reported by Willmarth and njf
:: - * e
= Wooldridge (14) for pressure signals in the 0.41 < R < 0.95 (low band) -
.‘.‘o Py "
wﬁ* Eﬁ!
and 4.1 < — 6.8 (high band) frequency ranges. In order to compare ¥

[ 4

the correlation data produced by the simulation with these results, a ! 3
. ‘.1
pseudo band pass filter has been employed. A comparison can be made by 14%
::_ ~..:
. [y .:
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employing IF STATEMENTS in the simul ation program rather than digital

filters. That is, only those randomly generated pressure events which
had frequencies in the prescribed intervals were allowed to contribute

to the transducer histories. Since there are higher harmonics

associated with the discrete pressure events, {which were allowed to

$ﬁ accumulate using this approach), the "filtering" was not perfect.

N

;é However, the actual experiments did not employ perfect filters either.

o The low band and high band data are shown in Figs. 14 and 15 along with
;A the experimental data of Willmarth and Wooldridge (14). 1In Fig. 15,

gQ‘ only the locus curve of the space-time correlation peaks is shown as a

i; solid line. The apparent convection speeds for the simulated case are

v
oy

approximately 0.6 U_ for the high band and 0.8 U_ for the low band.

Narrow band correlation data have also been produced using a

similar pseudo filter for a spatial separation of 5;-= 5.0. The fre-
8
quency bands were defined as 16.0 percent on either side of centered
wﬁ*
frequencies of-ﬁ— = 0.33, 0.62, 1.15 and 2.39 and are shown in Fig.
@ .

16. The narrow band convection speeds show the proper celerity de-

LA Ao a8
WMo e .
DO ey IR )
LR

'y
a.

crease with increasing frequency. A center frequency of 0.1l4 Yo was
)

also examined but the correlation results were unsatisfactory for rea-

sons which will be discussed in the next section.

l."lJ’L"’L-... -.ﬂ A

& al.
e

3.2 Power Spectra

Power spectra for the different sized transducer simul ations can be

developed directly from the auto-correlation data. However, interpreta-
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tion of power spectral data is limited to a frequency interval which is Y
~=d

controlled by the sampling data (specified time step) and the total time @
|

record., Since either a Fourier transform or a fast Fourier transform ft%
-':-*

must be used to extract the power spectrum from the auto-correlationm, ;:“
consideration must be given to the upper frequency limit (Nyquist fre-
quency) where the inverted Fourier transform will begin repeating
itself. The sampling frequency fs must be greater than or equal to 2 fN
(where fN is the Nyquist frequency) in order to be able to recover the
original signal from the Fourier transformation.

Figures 17 through 20 represent the variation of power spectra with
transducer diameter, where the shaded area is the range of experimental

data given by Bull [15], Willmarth and Wooldridge [l14], and Blake [6].

The maximum and minimum frequencies generated in the simulation are

. € I s
max‘ At

where At is the resolving time step and

.
:

B,

iEE

fan > pll o

min T ~

e

where T 1is the total record time. The above maximum frequency gener- e

Pt

ated by the simulation is smaller than the sampling frequency fs associ- N

- -;

: : . 3

+ated with Nyquist frequency fN of turbulent wall pressure fluctuations. =@

{

L4 . 13 I3 .

Therefore, the discrepancies between the experimental data and the simu- 1

lated spectra at the high- and low-frequency extremes are due to the 3

W

)

time step resolution and the shortness of the simulated record, respect- = .

ively. However, the results are in close agreement with the _Z]

experimental data in the mid-frequency range for a wide variety of %

=

diameters. The above figures indicate a small increase in the power )

< 4 ® -
N k 3 P o g -

5 level at high frequencies as the diameter approaches zero. Considering A
HE a0l
.:,\ R
o .'.
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Comparison between the power spectrum of a simulated wall -ﬁi
pressure history and the experimental measurements of Bull o
(15], Willmarth and Wooldridge [14], and Blake [16]. s
(Large transducer case) Ny
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Comparison between the power spectrum of a simulated wall
pressure history and the experimental measurements of Bull
(15], Willmarth and Wooldridge (14], and Blake [6].
(Intermediate transducer czase)
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Figure 20. Comparison between the power spectrum of a simulated wall ]
pressure history and the experimental measurements of « 5
Bull [(15), Willmarth and Wooldridge [(14], and Blake [6]. Ty
(Ultra small transducer case) -, 4
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the degree of approximation used in the present work and the scattering

of experimental data the agreement between the simulation and

experimental results is considered satisfactory.

3.3 Variati fP
ST ECLODRGIERE S

For many years experimenters scaled transducer diameter data with
*
the boundary layer displacement thickness § [13-15] and showed only

small variations of PR M.g. 28 the parameter _d approached zero. How-
.M.S. =

8

ever, more recent results suggest that small scale pressure fluctuations

in turbulent boundary layers may have a significant effect on the
PR.M.S. value (Blake [6], Emerling, Meier and Dinkelacker [5], and Bull
and Thomas [10]). Since most of these high frequency fluctuations are
produced in the wall region, it was suggested by Emmerling, Meier and

Dinkelacker [5] that the scaling of transducer diameter should be with

respect to the inner variable _V which expands the lower limiting

U
T

region significantly. They also suggested that instead of wall shear
stress, free stream dynamic pressure should be used in normalizing the
R.M.S. pressure,

For the present study, it was decided to concentrate numerical
testing in the range Eli < 200, in order to verify the above sugges-

\Y

Uud
tion. Therefore, diameters with the value -%—-= 9, 18, 35, 54, 72, 90,

135, 180, 271, 360, 451, and 541 have been used for testing. The ampli-
tude of PR M.g, can be adjusted in this simulation by simply changing a

scaling parameter in the program. However, an ad justment was made only

for one large diameter case to establish a realistic level for use with
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all other cases. Hence, each subsequent case was subjected to an -
<N

identical simulated pressure history. Figure 21 shows the variation of '“;f
Sl

.

PR M.S with the transducer size as measured by Emmerling, Meier and g
. . . r~.'1

g ! . 3
Dinkelacker [5] and Bull and Thomas [10] along with the present simula- o
tion results, Although there is a fluctuation of P , values for ":‘,—.“'
M., o4

U d 3 . ! ;
_1_) 200, the oscillation is small and PR M.g, can be represented by a =i
u M.S. 7
straight line for large diameters. The constant simulated PR 03 4
.M.S. S g

region is also followed by a sharp increase in the R.M.S. value as the @]
diameter shrinks. The simulated variation approximates the curve given S
by Bull and Thomas [10]. i -}:}
Although the increase in PR M.S is significant, it was not clear 1204
whether the jump was caused by the inclusion of high frequency SN
disturbances or by achieving a better resolvability of large disturi~ a :ﬁ
ances at small diameters. Therefore, a simulation was conducted in §:§“j
R R

which all the disturbance events with wavelengths smaller than-—% = 180

-~
Ls)® e
p g -2t ty

were excluded from the simulation. The remaining fluctuations were

U d
resolved with a diameter of -%—-= 18 which is in the range of increased

oy
'
1

ok
9.

.
PRy

.
.

I

P That test produced the same P and has indicated that

R.M.S.°

very high frequency pressure fluctuations do not contribute measurably

L
...k-. Al 4

to the R.M.S. level.
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4., CONCLUSION

A wide range of transducer diameters have been used in the present

simulation to study the variation of R.M.S. pressure with sensor size

when the transducers are exposed to identical signals. It has been

shown that the PR M.S level increases moderately at small values of ;3;
U_d -~
= which is consistent with more recent experimental data. The |
simulated result indicates that PR M.5 increases from a nominally .:“j
u.d :
constant value for sensor sizes smaller than o ki 40 which differs from ;
U_d B
the departure point of =5 ° 170 suggested by the experimental data. o
E .
The simulated curve closely approximates the result given by Bull and :El

Thomas [10] in terms of the magnitude of increase. O
Although the rise in the R.M.S. level is significant, the result-
ing curve suggests that the increase is not as large as that reported
earlier by Emmerling, Meier and Dinkelacker [5]. It is known that the
above contribution to PR.M.S. has been attributed to small scale
structures in the inner region of the turbulent boundary layer by
several workers in the field. However, the R.M.S. level of the simulat-
ed signal which deleted high frequency events indicated that the contri-
bution of small scale fluctuations to the PR.M.S. is insignificant.
Power-spectra have been calculated for several different transducer
diameters. The power spectra showed slight increases in energy content
at high frequencies and a slight increase in the peak frequency as the
diameter was reduced. The shapes of the spectra are very similar, and

the agreement with experimental data is reasonably good.
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Ne
23]
et Two point correlations have been calculated for separation dis~
- X ;
- tances of = = 1.66, and 13.37. The correlations show clearly the
8

A :
% convection and decay patterns of the pressure field. For large trans-
WY
: ducer diameters the width of the correlation curves increases. This is
2

in accordance with the expectation that higher correlation is obtained
£

when the resolvability of small scale structures is poor. As the

diameter is reduced the correlation curves become narrower. Again this

is expected since, the inclusion of small pressure fluctuations which do

FRh
s 2t

not correlate over large separation distances or time delays, have a

R
{ S

significant decorrelation effect. Low~ and high-frequency band correla-

tion of the generated pressure fluctuations also showed the correct

convection speeds. The narrow band, two point correlations showed a

decreasing convection speed as the center frequency was increased.

R TACRING

Overall the agreement between the simulated curves and the experimental

data of Bull [15] and Willmarth and Wooldridge [14] is quite good.

PO
JLBPURT, ML oty S i S

In summary, we have shown that a simulated turbulent wall pressure

signal with properties similar to experimental measurements produces

root mean square pressure levels which vary with sensor size in a manner

a‘a‘sa " a"»

which is similar to experiment. The size effect is not pronounced for

the power spectra, but the interesting result that the maximum values of

two-point correlations decrease with decreasing size was observed. This

effect can be attributed to the increasing contribution from small 3 -~

wavelength pressure fluctuations.
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FORCE CONTRIBUTION OF A SINGLE PRESSURE EVENT 7lh;

{4

,- k. ‘.’

-y

. I3 . =

The streamwise length of the transducer (size) and the sampling 'j.;

rate (time step) both distort the recorded pressure signal. Depending

on the wavelength (and frequency) of the particular fluctuation event,

the net pressure contribution sensed by a transducer can vanish even
though the disturbance is over the transducer. Also, if sampling rates i

are slow, an event may be convected completely across the transducer in

less than one time step. In order to understand the distortion produced
by finite pressure transducers and sampling rates, calculations have

been made for a variety of prototype pressure events, AP(x,t), given by:

: 0 5 x € ct-L
] AP(x,t) = sin 27 (x-ct) - 1/2 sin 47(x-ct) , ct-L < x < ct
&f:i L_ —.]:—
0 0 X > ct
(¢ > 0)

where L is the wavelength and c is the convection speed. Each event was

o %
s

ey
aee .

assumed to have unit magnitude and no decay of any type was assumed in

E

order to show clearly the spatial and temporal resolution effects.

Since the wave front for AP(x,t), designated Xf(t), is located by:

Xf(t) = ct

2
¢

(
]
]

X!
4

L]
i
)

8.8 .4
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a contribution to the pressure force on a transducer located on the in- AR
—d

terval, x < x< xp, will be made when @)
@

Xf(t) > Xy 4

ol

and Xf(t) - L< x. : )

where the origin of the coordinate is sitting on the wavefront and is
moving with the event convection speed, c.
Assuming the spanwise (Z) dimension of the transducer is unity, the

incremental force contribution due to this pressure event at some time,

CARY
0

t which satisfies the wave front criteria (x < t, < x2+L) is given
c c
by:
o)
. i 20 .
3 F(tn)-' 7 ef [sin ® - 1/2 sin 26]d9
“l 1
ot
"y
¢
= 27F
_ Cos 20, - cos 20, -~ n
A tcos 0; - cos 02 = T
where 27 x1 when Xf - L <x1
h
91 =
W ®L) hen X, - L > X
_— £
L
" i
and g xf , when X <x, . 1
—_— £ i
L X ;i
..-‘._a
6, = L
. .
o 21x, , when Xf > X5, 5
L
j SiKh
j .
o

. o
JORU
.
)
i
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Consequently, the average incremental pressure contribution, Aﬁn, can be

written:

*

= n L
= - - (3]
AP ) 1/4 [cos 292 cos 261] + cos 91 cos 6,

The time step discussion will be deferred temporarily and attention
will be restricted to some time, t when the disturbance is over the
transducer. For very early times, the wave front will be over the
transducer, while the trailing edge of the wave has not yet crossed the

boundary, x;. (See Fig. Al). Then,

2nct
6, = =
while, 2 L
2xx
91 = 1,
so that
L . 4nctn 4 27x 21rct:n
APns W 1/4[cosT ~ coSs I ]+cos I - cos —p— .
For very late times,
i Zﬂ(ctn.L)
1 L ’
while, nx,
92' 2

*Integration can be checked by taking the limit as Xy > Xg, which
restricts time so that 8, + 6;,
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leaving j

2z

&)

.'.:1

.- U +
AP = L 1/6 [cos “"*2 = cos 2"°ta] + cos 2™tn - cos 2™ | .

Zr(xz-xl) L L L L

Two types of wavelength cases are delineated by the case when

=X =1,

=%y

When the wavelength is greater than the transducer length,
L > Xy~ s there will be times, tn’ when neither the wave front nor its

trailing edge will be over the transducer, in which case

AE’n = Ll (/& [ cos 4ﬂ(ctn-x2) - CEs 4“(x1-L-ctn)]
2n (xz-xl) —1 -
+ cos Zw(xl-L-Ctn) = ad 2“(ctn-x2) .

L

When the wavelength is less than the transducer length, L < x X for,
+
X, L <t < x2 ’
n —
c c

AP = 0.
n

The second case in which L < X, "X

Figure A2 represents the averaged force as a function of time for a

is discussed next.

large transducer (L < xz-xl). That figure shows how the shape of the
double sine wave is reinterpreted such that the negative and the posi-
tive pressure regions are separated by a dead band.

This dead band 1is

created during the time interval when the entire wave is over the trans-
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ducer. The same effect is also responsible for a significant change in

the wavelength of the averaged transient force. The indicated wave-
lenzth will be twice that of the event when the transducer length,

X)"X 1, is equal to L. When x,-x, is greater than L, the apparent wave-

2001
length is increased by more than a factor of two, as shown in the fig-
ure. Also note that the averaging caused by the transducer has a severe
effect on the amplitude of the wave.

At this point, it should be pointed out that, in order to show the
above effects as clearly as possible, the smooth curve of Fig. A2 has
been obtained by employing a resolving time step which was an order of
magnitude smaller than the time step used in the simulation. Therefore,
the same case was repeated employing the nominal simulation time
increment used in this study. The resulting curve is shown in Fig. A3.
Although it is not a smooth curve anymore, the major features described
above still are detectable.

A series of tests have been run for the case in which L > X)X,

In those tests the width of the sensing area has been kept constant at a

d . ]
value of =, = 0.176, while the frequency of the wave and the resolving

time step have been varied. Figure A4 shows a typical wave with a
frequency of 300 Hz (St = (0,287) resolved by a time step which is an
order of magnitude larger than the time step used in the simulation.

The solid lines are the numerically integrated values, while the squares
represent the theoretical wave at a point location. Although, the
agreement between the two types of calculations is good, the figure does
not carry sufficient information to represent the prototype double sine

wave. Figure A5 shows the same wave resolved by a time step equal to
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the simulation time step. The agreement between the two methods is ex-
cellent and the shape of a double sine wave is retained. Subsequently, - @
the frequency of the wave was increased to 2500 Hz (St=2'39) while the ri-“
resolving time step was kept constant., Figure A6 suggests that as the
frequency of the wave is increased, the temporal resolution becomes a

problem. Also, note that there is a phase shift between the two types
of calculations. Figure A7 represents a wave with a frequency of 2500
Hz resolved by a time step which is an order of magnitude smaller than
the time step used in the simulation. The above figure indicates that

the resolution problem disappears as the time step approaches zero.

In summary, significant alterations of prototype high frequency
pressure fluctuation events can occur due to transducer size and resolv-
ing time increment. But, as the wavelength of the individual event in-
creases, the effects of transducer size and temporal resolution

diminishes.
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APPENDIX B o3

COMPUTER PROGRAM LISTING |

A PROGRAM SIMU(INPUTsOUTPUT,TAPF5=INPUT,TAPEG=OUTPUT, TAPEL,TAPE2 A
il 1, TAPE7, TAPES) 2
i- DIMENSION P(5,16500) _—
d DIMENSION SUMX(8000),SUMY(8000) @,
| EQUIVALENCE(P(60000),SUMX)s(P(74000),SUMY) !
% DIMENSION PA(6)»PR(6)sSTRT(6),STP(6) R
i3 NR=5 Mol |
% NW=6 : i
5 c NDIMsMAXIMUM TIME DIMENSION 2
h NDIM=16500
; N2C=NDIM/500
o COIM=NDIM
e CORX IS THE ADJUSTMENT FOR DX STREAK.,
IF MORE THAN ONE BURST PER STREAK» CORX IS NOT UNITY
CORX=1,5
CORT IS THE TIME ADJUSTMENT FOR DT=-STREAK
CORT=2,
XD=DEVELOPMENT LENGTH (M)
XM=MODEL LENGTH (M)
PAR IS THE DECAY ADJUSTMENT ACCOUNTING FOR DISTURBANCE SIZE
PAR=10., o
XD=4,145 k
¢ DXT IS THE DISTANCE BETWEEN STORAGE LOCATIONS
DXT=0.008 ;
OWT=DXT
¢ DWT IS THE WIDTH OF THE PRESSURE STORAGE LOCATION
DWT=0,002
IMJ=0
XM=20.0
157 XD=XD+XM
XT=aXD+ XM
DXT=NODE SPACING ON MODEL(M)
NXM IS THE NUMBER OF STORAGE LOCATIONS...YOU MUST CHANGE THE
NUMBERS IN THE DIMENSION STATEMENTS AND IN THE TAPE OUTPUT

OO0 (o) [N g )

OO0

NXM=3
STRT(1)=XxD
STP(1)=STRT(1)+DWT
STRT(2)=xD+0,008466
STP(2)sSTRT(2)+DWT
STRT(3)=XD+0.06B187
STP(3)sSTRT(3)+DWT
XSMX22,0+STP(NXM)
c XSMX IS THE RIGHT-MOST LOCATION STORING PRESSURE
US=33,5
BLT=0.,0408
UFRIC=1,2587
CNU=0,00001395
RHO=1,2
DOPT=BLT/B
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ENTER OTHER DISPLACEMENT THICKNESS HERE IF DESIRED (CM) i
DIMENSIONLESS STORAGE LOC. WIDTH==W/DISP., THICK. s ]
WOMsDWT/DPT —
WRITE(NWs205) WOM -8,
205 FORMAT(///55Xs*DIM, STORAGE WIDTH EQe *,E16.65//) s
WRITE(NW,206) o
206 FORMAT(5X,*LOCATION NO. DIMe LOCe*s/) <3
00 30 I=1,NXM
XOM=STRT(I)/DPT e
WRITE(NW»210) I,XxDM =@
210 FORMAT(10X,14,10X,E16.8) v
30 CONTINUE ol
CALCULATION OF WALL SHEAR STRESS, Tw i
TW=RHO*UFRIC*UFRIC
CALCULATION OF RMS PRESSURE FLUCTUATION
PRMS=2,0*TW
CALCULATION OF MINIMUM RELEVANT DISTURBANCE LENGTH
TWV IS TIME DURATION OF DISTURBANCE
TWV=DPT/US
LENGTH OF SMALL DISTURBANCE
CLM=0, 7*US*TWV
DECAY RIAS PARAMETER
CWV=PAR®CLM
CWV=0,007
c MISCELLANEOUS CONSTANTS
PI=3,1415926
TPI=2,%PI
HPI=PI/2.
C0=2,515517
C1=0.802R53
C2=0.010328
D1=1,432788
0220.,189269
03=0.001308
-4 ¢ STARTER FOR RANDOM NUMBER GENERATOR
XSTART=77294,
RNM=URAN{XSTART)
XSTART'OOO
c CALCULATION OF NOMINAL PEAK FREQUENCY
FPEAK=0,20574%US/(TPI*DPT)
FMAX=10.*FPEAK i
COMPATABLE TIME STEP
DTT=1.,/FMAX/10.
A USER SPECIFIED TIME STEP CAN BE ENTERED HERE
THIS TIME STEP IS THE TIME INCREMENT USED IN THE RESOLUTION OF THE
OUTPUT==THE INTERNAL FLUCTUATION TIME STEP IS RANDOM
MAXIMUM TIME IS CCNSTRAINED BY COMPUTER STORAGE. SET THE NUMBER
OF ALLOWABLE TIMESTEPS==NTM
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NTM=16500
c INITIAL TIME IS TO(SEC)
T0=0.
DTSUM=0,
NCT=1
c PREFIXES FOR RANDOM NUMBER CALCULATIONS
PX=DPT#UFRIC/US
PT=DPT/US
PWsUS/DPTY
c CALCULATION OF REQUIRED START UP TIME FOR SIMULATION
TSO=1.8*XT/US
NMIN=TSO/DTT
TMAX1=NMIN#DTT
c IF NMIN IS GREATER THAN NTM, NTM IS OVERRIDDEN
IF(NMIN-NTM) 201,201,202
202 NTM=NMIN
201 CONTINUE
TMAX=NTM*DTT
WRITE(6,100) DTT,TMAX
100 FORMAT(5X,*DT=*,F1048,10X,*TMAX=*,F10.4,//)
TMAXS=CDIM*DTT
TMAX=TMAX+TMAX]
NTM2=NDIM=NMIN+2
TREF=TMAX1
NREL=0
c INITIALIZE PRESSURE ARRAY
D0 52 NX=1,NXM
DO 52 NT=1,NDIM
52 P(NXsNT)=0.0
NFLG=0
TSuUB=0,
c INITIALIZE LOCATION AND TIME BASE» ETC.
1 X=0, .
DTAVG=DTSUM/NCT
NCT=0 '
DTSUM=0.
TO=TO+DTAVG
IF(TO-TMAX1)2,150,150
150 IFINFLG) 151,151,15
2 151 NFLG=1
A TMAX1eTHMAX 3
) 00 153 JsNTM2,NDIM 3t
4
i

‘Pl

LANL R SSUA,

e,

P(I,J)=0.0 5

153 CONTINUE s

- T0=0, . o
154 CONTINUE fﬁ!
TSUB=TREF X
TMAXS=TMAXS+TREF MR |
NREL=NMIN e
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2 RNMsURAN(XSTART)

RNM=0,005+0+59%RNM
o CALCULATION OF DX USING RANDOM NUMBER RNM
HPIIsHPI*RNM
DX=PX%(32,2-2/(RNM+0,0619)+72 . *RNM*%2+0,63%TAN(HPII))
DX=CORX*DX
XsX+0X
RNMaURAN(XSTART) S
RNM=0,04+0.955%RNM - %
¢ CALCULATION OF RADIAN FREQ., FROM NEW RNM i
SRNMsRNM*%0, 6667 is8
RRNM=(1.=RNM)**0,74 ey
FRNM=1/RRNM=-1 =@
WEPW*(0s523%FRNM+0,799%SRNM=0,785%RNM) 5;j
FaW/TPI TN
IF(F.GT.7300.)60 TO 85 L3, |
DC=20.78=F/(105+*FPEAK) ~i
UC=DC*US b Y, |
60 TO 87 e |
B5 UC=0.46%US E@ﬂ
87 TPs1/F e
BOBFAC=4.605/((DPT/UC)**2) i
DXE=UC*TP el
XDsX=DXE ]
¢ X0 IS THE ORIGIN OF THE SINE WAVE FLUCTUATION ey
¢ X IS THE FRONT OF THE SINE WAVE ;ﬁi
c XS IS THE FIRST STATION AT WHICH P IS RECORDED. LS
c XS AND NXI WILL BE TAKEN AS THE FIRST STATION VALUES--THEN OVERIDDE -::7
XS=XD Eved
NXI=1 N
CHECK TO SEE IF THE DISTURBANCE IS OVER THE MODEL and
IF(XD=X)3,3,5 i)
¢ IF THE DISTURBANCE IS OVER THE MODEL, HAS IT PASSED THE LAST DATA Sl
¢ STATION P
3 CONTINUE L
IF(X0=XSMX)971,1,1 e
971  CONTINUE 3

IF(X0.LT.0.)6G0 TO 964
DD 43 I=1,NXM
NNP=X0/STP(I)

IFI(NNP)G961,5,962,963
961 NXI=]

GO TO 964
962 NXI=]

GO TO 964

963 CONTINUE
43 CONTINUE
964 CONTINUE
c NXI IS THE NUMBER NF THE FIRST STORAGE LOCATION

64 -4
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CXNI=NXI
CONTINUE
GENERATION OF RANDOM TIME STEP
RNMsURAN(XSTART)
RNH300005+0099*RNH
HPII=HP I*RNM
DT=sPT#*(32.2=2./(RNM+0,0619)+72.*RNM*%2+0,63*%TAN(HPII))
DT=CORT=*DT
T=TO+DT
NCT=NCT+1
DYSUM=DTSUM+DT
IF(X0D.GT+STPINXM))GO TO 2
C GENERATION OF GAUSSIAN RANDOM PRESSURE AMPLITUDE
RNM=sURAN(XSTART)
CIND=RNM+0.5
IND=CIND
CIND=IND
PPP224%(1+=CIND)-1,
ARGR=RNM/(1.+CIND)
ARG=1./(ARGR*ARGR)
CT=ALOG(ARG)
5 CMsSQRTICT)
b PMG=CM=(CO+CM®(C1+CM*C2))/(1+CM*(D1+CM*(D2+CM%D3)))
i XS=XS=DXT
PPP=25,3000%PPP
PE=PRMS*PMG*PPP
: PE=22,0%PE
c MODIFICATION OF PRESSURE AMPLITUDE TO ADJUST RMS PRESSURE LEVEL
c DO LOOP FOR STEPPING THROUGH MODEL STORAGE LOCATIONS
DXXE=DXE
DO 14 NX=NXI,NXM
DXE=DXXE
c MODEL STATION X-LOCATION
XSsSTRT(NX)
c ARRIVAL TIME OF PRESSURE FLUCTUATION
DXS=XS=X
ADX=ABS(DXS)
DXS=(DXS+ADX)/2.
TGO=DXS/UC+T
FLUCTUATION DEPARTURE TIME
DXOsSTP(NX)=-X0
TSTP=2DXON/UC+T
C DOFS TSTP EXCEED TMAX
IF(TSTP=TMAXS)9,9,7
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s 7 IF(TGO-TMAXS)8,8,13
0 8 NSTOP=NDIM

i 60 TO 10

i 9 NSTOP=TSTP/DTT

" 10 NGD=TGOD/DTT
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, IF(NGD=-NREL)99,99,98

3 98 CONTINUE

| AGX=DX0**0,46

l ARG==4,20%AGX

: DH=0.35+0.65%EXP (ARG)

i DXEE=DH*DXE

4 DR=DXE=DXEE

j RE=DR/ (DTT*UC)

g REsRE+0.5

; NP=sRE

i NSTOP=NSTOP=NP

K DXE=DXEE

i IF(DXE.LE+0.,0001)60 TO 2
" ¢ DO LOOP FOR SUCCESSIVE TIME CONTRIBUTIONS TO THE SAME X LOCATION
" 00 12 NTsNGO,NSTOP

. TCaNT#*DTT

u DELT=TC-T

! XTF=X+UC* (DELT)

" XTB=XTF=DXE

THET1s (XTF=STP(NX))*TPI/DXE
TH1A=sABS (THET1) .
THET1s (THET1+TH1A)/2,
THET2s(STRT(NX)=-XTB)/DXE
TH2A=ABS(THET2)
THET2=TPI-(THET2+TH2A)*P]
XO0T=UC*DELT
IF(X0T=-0.0000001)19,19,18 e

18 CONTINUE 52,

C FREQUENCY DEPENDENT VARIABLE DECAY RATE ADJUSTMENT X

ARsXOT/DXXE
ARGX=s=2,84%(AR*%(0,30)
IF(ARGX.LE.=30,)60 TO 73 i
DECAsSEXP({ARGX) 5
GO0 TO 23

73 0DECA=0.0
GO0 TO 23

19 CONTINUE
DECA=1,

23 CONTINUE
OTH1=2.*THET1
DTH222,*THET2
CF1s(CNS(DTH2)=COS(DTH1)) /4,

. CF2=COS(THET1)=-COS(THET2)

DPsPE*(CF1+4CF2)
OPsDP*DECA*DXE/ (TPI*DWT)
BOBBA=BOBFAC*DELT**2SIF(BOBBA.GT«300.)B0BBA=300,.0
OP=DP*(1.-EXP(-ROBBA))
NTIMEaNT=NREL
PI(NXsNTIME)sP (NX,NTIME)+DP
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12 CONTINUE
99 CONTINUE
13 CONTINUE
14 CONTINUE
130 FORMAT(5X,F10.656E1446)
G0 TO 2
15 CONTINUE
NWRT=NTM/8
CNT=NTM
DO 11 J=1,NXM
PA(J)=0,0
11 PR(J)=0.0
DO 21 .J=1,NXM
DO 20 I=1,NTM
PFI=P(J,1)
PA(J)=PA(J)+PFI
PR{J)=PR{J)I+PFI*PFI
20 CONTINUE
PA(J)=PA(J) /CNT
WRITE(NW»192)JsPA(J)
PSJ=PA(J)*PA(J)
PRJ=PR(J)/CNT
PR(J)=SQRT(PRJ=PSJ)
PRMSR=PR (J)/PRMS
WRITE(NW,193)J,PR(J),PRMSR
21 CONTINUE
DO 22 J=1,NXM
DO 22 I=1,NTM
22 PUJsI)=P(Jde1)=PALJ)
NYM=8000
ANNaNYM
NKL=NXM=1
DO 24 KK=1,NKL.
DO 25 K=1,500
KlekKe=1
SUM=0.,
SM20sSSKKM=0., $SKKOMK=0 . $SKKMK=0,
SUM1=0.
DO 40 M=1,NYM
SUM=SUM+P (KK, M) %P (KKsM+K1) ¥l
SUM1=SUML+P(1, M) *P(KK+1s M+K1) <o
SKKMaSKKM+P (KKyM) $%2 S\
SKKMK=SKKMK+P (KKy M4+K 1) *%2 TS
SMaSMP (1, M) %%2 ;
SKKOMK 2 SKKOMK+P (KK+1, M+K1) #%2
40 CONTINUE
SKKMsSQRT (SKKM/ANN)
SKKMK=SQRT(SKKMK/ANN)
SM=SQPT(SM/ANN)
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SKKOMK=SORT (SKKOMK/ANN) ~
SUMX(K)3SUM/ANN/SKKM/SKKMK < izzel
SUMY (K)=SUM1/ANN/SKKOMK/SM “.“'.0}
25 CONTINUE
WRITE(NK,191)
. WRITE(NW»200) (SUMX(K)»K=1,500)
! WRITE(NW,191)
- WRITE(NW,200) (SUMY(K),K=215500)
i 24 CONTINUE E
191 FORMAT(1H1) v
! 192 FORMAT(//5s5X»"UNCORRECTED PAVG(",I3,") IS",E20.6) -

193 FORMAT(10X,"CORRECTED PRMS(",13,") IS",E20.65" RATIO",F10.3)
| 200 FORMAT(5F20.6)

: JXY=5500 :
DO 93 J=1,NXM s
WRITE(1)(P(JsKJ) K= =1,16500) nw.j

93  CONTINUE ok

1000 STOP e

END ad
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